If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-225=0
a = 2; b = 10; c = -225;
Δ = b2-4ac
Δ = 102-4·2·(-225)
Δ = 1900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1900}=\sqrt{100*19}=\sqrt{100}*\sqrt{19}=10\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{19}}{2*2}=\frac{-10-10\sqrt{19}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{19}}{2*2}=\frac{-10+10\sqrt{19}}{4} $
| 5r+5=8r+72 | | 2x+5=x+27 | | 5y-6=7y | | 13=-6+r | | 4b+5(4b+1)=-33+5b | | 27x+35=5(4x+8)+7x-5 | | (x2+16)=0 | | 2.5x+10=x-1.5 | | 6c-2=3c+4 | | 10x*3=48 | | 6y+3(y-4)=5(y+1)-3 | | (x2-16)=0 | | 4x+8=4.5x+14 | | -8a+6(9+7)=1 | | 4x+8=9x+14 | | 53=5n-12 | | 7^x+4=25 | | z^2+8z=-7 | | 3^2(x+1)-18.3^x+9=0 | | 9.12+x=12 | | 11-3x+14=16 | | -8a+6(9+7)=2 | | 6x+2x-3+12(2+10x)+16+2=-2 | | -26=-4(4+x)+6(5+4x) | | X^2-2.11x-0.16=0 | | 2x+6=2.5x+10 | | 6x+2x-3+12(2+10x)+16+2=0 | | 15+24r=423 | | S-1.9x=4.9 | | 2x+6=2.5x+5 | | 3x+6=3.5x+4.5 | | 14x-8x+3-5x=16+11-8x |